If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2u^2+u-52=0
a = 2; b = 1; c = -52;
Δ = b2-4ac
Δ = 12-4·2·(-52)
Δ = 417
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{417}}{2*2}=\frac{-1-\sqrt{417}}{4} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{417}}{2*2}=\frac{-1+\sqrt{417}}{4} $
| 0.3x−1.5=1.8 | | 2(x+4)-(2x-3)=10 | | 10x+15=3x+4 | | 3h/4-2h-1/3=5/6 | | x(x+1)(x+2)(x+3)=35 | | 2x-5=3(2x-3) | | m2-3m+1=0 | | -5y+7=4(2y+5) | | 3-2x=23+3x | | 4x+11=12x+3 | | m2-3m-1=0 | | |-3x+5|=7 | | 0.06x+30=0.09x | | 2+3x=26-3x | | x=4+8x | | 4x−5+6x=13 | | 7y−10+2y−5=12 | | a³-a²=0 | | -8/9=d+2 | | 12x-6=12x+19 | | 5(x)/2=5/3 | | 5*x-2=18 | | 23=r+14 | | (x-20)^2=300 | | 3x*x=14700 | | 4x/3+1/2=x/3-3/4 | | 7/4x+2=-5/3x-4 | | (X+2x+3x+4x+5x)=30 | | 20-2(z-5)=(10-3z) | | 4x-3(x+15)=2x+5(-6-x) | | 9x2–15x+4=0 | | 3^2a-4(3a)+3=0 |